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The finite Volume Time Domain (FVTD) method is recast in a Large Time Step (LTS) version to solve the time domain Maxwell’s
equations. LTS allows the use of time steps much larger than that dictated by the Courant Friedrich Lewy (CFL) criteria for
numerical stability. Solutions can be obtained much faster and with higher accuracy compared to conventional excplicit time stepping
methods.
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I. INTRODUCTION

PRACTICAL electromagnetic (EM) problems often involve
scattering from electrically large objects as well as re-

entrant structures. Large electrical sizes lead to very fine
meshes arising from stringent points-per-wavelength (PPW)
requirements to adequately resolve the physical process in a
discrete computational framework. The presence of re-entrant
structures usually leads to long simulation times due to multiple
internal reflections. Full wave solvers in the time domain like
Finite Difference Time Domain (FDTD) and Finite Volume
Time Domain (FVTD) despite many attractive features, be-
come prohibitively expensive when dealing with such prob-
lems. FDTD/FVTD methods are usually based on explicit time
marching techniques, and the use of very fine meshes leads to
an extremely small time step dictated by the CFL criterion for
numerical stability resulting in unrealistically long simulation
times. Thus, computationally efficient algorithms for solving
the time domain Maxwell’s equations that can potentially
bypass the CFL stability criterion is of major interest. In the
present work the LTS method is used in a FVTD framework
to accelerate solution of the time domain Maxwell’s equations
by either bypassing or at least relaxing the CFL criterion. The
LTS method is an extension of Godunov’s algorithm and was
introduced by LeVeque [1] for solving nonlinear hyperbolic
conservation laws. It is based on recognizing the fact that
the CFL stability criterion is an artificial constraint arising
out of posing a physical problem in a discrete framework.
In the classical Godunov’s method the Riemann problem is
solved at each cell interface at each time step to construct the
numerical flux function. The CFL stability criterion can also
be interpreted as a means of separating individual Riemann
problems at neighbouring cell interfaces from interacting with
each other. The LTS method for solving nonlinear hyperbolic
problems assumes linearity and allows waves in Riemann
problems at individual cell faces to cross over each other
without change in speed, strength and creation of any new
waves due to interaction. This allows the conventional CFL
restriction to be bypassed resulting in large time steps in a
numerical time evolution [1]. This approach when applied
to purely linear problems like the time-domain Maxwell’s
equations, can in-principle provide an exact solution to the
discrete problem with very large time steps and is equivalent

to solving exactly along characteristics. In this work the LTS
method is applied to a Godunov based FVTD solution of
the time-domain Maxwell’s equations. Numerical results are
presented for EM field propagation in 1D and 2D in free-space.
It is shown that an infinite time step is possible in unbounded
domains while a CFL number much greater than one is possible
for bounded domains along with superior numerical accuracy
compared to conventional time-stepping.

II. NUMERICAL FORMULATION

Initially the LTS approach is demonstrated for the x−
directed and y− polarized 1D TEM waves
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where, Ey , Hz respectively are the electric and magnetic
fields, ε and µ the permittivity and permeability of the medium.
For the implementation of the LTS approach in FVTD frame-
work, equation (1) is recast into the conservation form
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In the FVTD formulation conservative form of Maxwell’s
equations are solved in the integral form. The integral form
of equation (2), for a finite volume vi = (xi−1/2, xi+1/2)
and explicit time step from time tn to tn+1 is written in a
discretized cell centered formulation as
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the numerical flux function. This discretized equation (3) is
solved using LeVeque LTS approach, which is based on the
generalized wave propagation form of Godunov’s algorithm.
The algorithm in 1D is as follows
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Step 1: The spatial domain is subdivided into number of
intervals (grid cells) and over each cell conserved variable
u approximated as in (4).

Step 2: Equation (3) is solved using solution of Riemann
problem to approximate the numerical flux function at
each interface of the grid cell. Hence, the discontinuity at
each interface is decomposed into m waves

Un
i −Un

i−1 =
m∑
p=1
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For the 1D case m = 2 with wave speeds (λ1, λ2) =
(−c, c). The wave speeds are eigenvalues of Jacobian
matrix ∂f(u)/∂x with c = 1/

√
µε. rp are the eigenvectors

of ∂f(u)/∂x and αmi−1/2 scalar coefficient of eigenvectors
rp in the eigenvector expansion (6). If the pth wave prop-
agates through the entire cell interval (xi−1/2, xi+1/2) in
time ∆t, then the pth contribution to the cell average at ’i’
is incremented by ∆upi−1/2. The increment is a fraction
when the wave propagates a portion of the cell interval.
In LTS algorithm, the Riemann problem at each interface
is solved independently. Thus, as shown in Fig. 1. the cell

Fig. 1. The schematic of wave propagation in computational domain

averages are updated with the combined contribution of
each wave which is cross that interval at time tn+1. For
a piecewise constant approximated u over cell i, the LTS
update can be written as
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where, ν = |λmax∆t
∆x | � 1 is the Courant or CFL number

and µ is it integer counterpart. The superscript 1 and 2
indicates the left and right moving waves in Fig. 1. In
conventional time evolution ν is restricted by the CFL
stability criterion to a value usually ≤ 1.

Step 3: Update boundary cells.
The 1D LTS formulation can be formally extended to mul-
tidimensions using a dimensional splitting method. This
method simplifies the multidimensional problem into a se-
quence of 1D operators.The CFL number is defined as ν =
max(|λmax∆t

∆x |, |λmax∆t
∆y |) with ∆x and ∆y cell faces in the

Cartesian X and Y directions.
Each 1D sub-problem is considered as an independent self
contained computation and boundary cells updated after each
dimensional sweep [2].

III. NUMERICAL RESULTS

Results are presented for EM wave propagation in freespace
in 1D [3] and 2D [4] involving periodic and perfect conducting

(PEC) boundary conditions. The LTS algorithm recovers an
exact solution with infinitely large time step in case of 1D EM
wave propagation while in case of 2D problems, it allows finite
but very large time step. Fig. 2(a) and 2(b) shows logarithmic

(a) 1D EM wave propagation (b) 2D EM wave propagation

Fig. 2. Errors in L2 norm with varying ν and PEC boundary conditions

error with varying ν as a function of time for both 1D and 2D
cases. ν � 1 has been used to obtain solution of comparable or
superior accuracy to that bounded by the CFL criteria ν < 1.

IV. CONCLUSION

LTS is implemented for FVTD solution of the time domain
Maxwell’s equations. The 1D study shows that the LTS scheme
retains an exact solution for infinitely large time step. Extension
to 2D is through dimensional splitting, the larger ν value again
provides higher accuracy due to reduced cumulative numerical
errors because of much fewer time steps.
The LTS technique in conjunction with the FVTD method
has the potential to be a very effective way to reduce long
simulation times encounted in the numerical solution of EM
waves involving large electrical sizes and re-entrant structures.
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